

Solutions

Is $f(x) = x^3 - 2x + 5$ continuous over all Reals? If not, list the points of discontinuity and classify them.	Yes, this function is continuous
Is $f(x) = \frac{x^2 - 6x + 5}{(x - 1)(x + 3)}$ continuous over all reals? If not, list the points of discontinuity and classify them.	No, this function is not continuous. It has a removable discontinuity at $x = 1$ and an infinite discontinuity at $x = -3$
Is $f(x) = \begin{cases} x, & x \neq 0 \\ 3, & x = 0 \end{cases}$ continuous over all reals? If not, list the points of discontinuity and classify them.	No, this function is not continuous. It has a removable discontinuity at $x = 0$.

Find the x and y intercepts:	X-intercept(s): (0,0)
$f(x) = \frac{x^2(x+9)}{(x-2)(x+9)}$	y-intercept(s): (0,0)
Find the HA and VA:	HA: $y = 0$
$f(x) = \frac{(x+4)}{(x-2)(x+1)}$	VA: $x = 2, x = -1$
Find the HA and VA: $f(x) = \frac{3x^3 - 15x^2 + 12x}{x(x - 4)(x + 1)}$	$f(x) = \frac{3x(x-4)(x-1)}{x(x-4)(x+1)}$ HA: y = 3 VA: x = -1

Find the HA and VA: $f(x) = \frac{x^2(x+9)}{(x-2)(x+9)}$	HA: SLANT $y = x + 2$ (use polynomial division to do $x^2 \div (x - 2)$) VA: $x = 2$
Find the holes: $f(x) = \frac{(x+4)}{(x-2)(x+1)}$	No holes because there are no matching factors in the numerator and denominator
Find the holes: $f(x) = \frac{3x^3 - 15x^2 + 12x}{x(x - 4)(x + 1)}$	$f(x) = \frac{3x(x-4)(x-1)}{x(x-4)(x+1)}$ Holes: x=4, x=0

Emily is building a fence to keep her strawberries safe. She has 40feet of fencing. The	Perimeter = $3w + 2L$ 40 = 3w + 2L Solve for L or W
equation would you use to maximize the area of the garden?	$L = \frac{40 - 3W}{2}$ Maximize area: Area = LW $Area = \left(\frac{40 - 3W}{2}\right)W$
The dimensions of a box are given below. What value of x maximizes the volume of the box? Length: 10-2x Width: 12-2x Height: x	(2) $f(x) = (10 - 2x)(12 - 2x)x$ Max of 76.77 at x = 1.81 $x = 1.81$ Maximizes the volume.
The dimensions of a box are given below. What value of x maximizes makes the volume 72? Length: 10-2x Width: 12-2x Height: x	f(x) = (10 - 2x)(12 - 2x)x Graph and find when y=72. The value is x=3.

Find the average rate of change of f(x) = 4x - 1 from $x = 3$ to $x = 7$	$\frac{f(7) - f(3)}{7 - 3} = \frac{27 - 11}{4} = 4$
Find the average rate of change of $f(x) = 4x^2 - 2x + 6$ from $x = -2$ to $x = 4$	$\frac{f(4) - f(-2)}{4 - (-2)} = \frac{62 - 26}{6} = 6$
Find the average rate of change of $f(x) = 7x^4 - 2$ from $x = a$ to $x = c$	$\begin{vmatrix} \frac{f(c) - f(a)}{c - a} \\ = \frac{7c^4 - 2 - (7a^4 - 2)}{c - a} \\ = \frac{7(c^4 - a^4)}{c - a} \\ = \frac{7(c^4 - a^4)}{c - a} \\ = \frac{7(c - a)(c + a)(c^2 + a^2)}{c - a} \\ = 7(c + a)(c^2 + a^2) \end{vmatrix}$

Find the average rate of change of f(x) = 8 from $x = -3$ to $x = 4$	$\frac{f(4) - f(-3)}{4 - (-3)} = \frac{8 - 8}{7} = 0$
Find the inverse of $f(x) = 4x - 1$	$x = 4y - 1$ $x + 1 = 4y$ $y = \frac{x + 1}{4}$ $f^{-1}(x) = \frac{x + 1}{4}$
Find the inverse of $f(x) = \sqrt{3x - 2}$	$x = \sqrt{3y - 2}$ $x^2 = 3y - 2$ $x^2 + 2 = 3y$ $f^{-1}(x) = \frac{x^2 + 2}{3}$

Find the inverse of $f(x) = \frac{4x + 2}{3x - 1}$	$x = \frac{4y+2}{3y-1}$ $3xy - x = 4y+2$ $3xy - 4y = 2 + x$ $y(3x-4) = 2 + x$ $f^{-1}(x) = \frac{2+x}{3x-4}$
Find the inverse of $f(x) = 2x - 9$	$x = 2y - 9$ $x + 9 = 2y$ $f^{-1}(x) = \frac{x + 9}{2}$