Graph $f(x)=\|x-3\|+\|x+2\|$ on your calculator. Sketch the graph and state intervals of increase, decrease, and consistency in interval notation.	Increase: ($-\infty,-2$]Decrease: ($-\infty,-2$ Constant: $(-2,3)$	$\begin{aligned} & \text { 2] } \cup[3, \infty) \\ & -2] \end{aligned}$	
Graph $f(x)=x^{3}-2 x+5$ on your calculator. Sketch the graph and state the local maxima and minima.	Local max of 6.089 Local min of 0.816		
Graph $\begin{aligned} & f(x) \\ & =\left\{\begin{aligned} -2 x-1, & x<-3 \\ 4, & -3 \leq x \\ \frac{1}{3} x, & x \end{aligned}\right)=5 \end{aligned}$ Sketch the graph and state the intervals of increase and decrease.	Increase: $(5, \infty)$ Decrease: $(-\infty,-3)$ Constant: $(-3,5)$	3)	

Is $f(x)=x^{3}-2 x+5$ continuous over all Reals? If not, list the points of discontinuity and classify them.	Yes, this function is continuous
$f(x)=\frac{x^{2}-6 x+5}{(x-1)(x+3)}$ continuous over all reals? If not, list the points of discontinuity and classify them.	No, this function is not continuous. It has a removable discontinuity at $x=1$ and an infinite discontinuity at $x=-3$
Is $f(x)= \begin{cases}x, & x \neq 0 \\ 3, & x=0\end{cases}$ continuous over all reals? If not, list the points of discontinuity and classify them.	No, this function is not continuous. It has a removable discontinuity at $x=0 .$

Describe the end behavior of $f(x)=-x^{3}-2 x+6$ using limit notation.	$\begin{aligned} & \lim _{x \rightarrow \infty} f(x)=-\infty \\ & \lim _{x \rightarrow-\infty} f(x)=\infty \end{aligned}$
Describe the end behavior of $f(x)=\frac{(x-3)}{(x+5)^{2}}$ using limit notation.	$\begin{gathered} \lim _{x \rightarrow \infty} f(x)=0 \\ \lim _{x \rightarrow-\infty} f(x)=0 \end{gathered}$ Hint: Think about the horizontal asymptote
Describe the end behavior of $f(x)=\frac{4 x^{3}-2 x+1}{2 x^{3}+x}$ using limit notation.	$\begin{aligned} & \lim _{x \rightarrow \infty} f(x)=2 \\ & \lim _{x \rightarrow-\infty} f(x)=2 \end{aligned}$

Describe the end behavior of $f(x)=6 x+1$ using limit notation.	$\begin{gathered} \lim _{x \rightarrow \infty} f(x)=\infty \\ \lim _{x \rightarrow-\infty} f(x)=-\infty \end{gathered}$
Find the x and y intercepts: $f(x)=\frac{(x+4)}{(x-2)(x+1)}$	X-intercept(s): (-4,0) y-intercept(s): (0,-2)
Find the x and y intercepts: $f(x)=\frac{3 x^{3}-15 x^{2}+12 x}{x(x-4)(x+1)}$	$\begin{aligned} & \quad f(x)=\frac{3 x(x-4)(x-1)}{x(x-4)(x+1)} \\ & X \text {-intercept(s): }(1,0) \\ & y \text {-intercept(s): None (hole at } 0) \end{aligned}$

Find the x and y intercepts:

$$
f(x)=\frac{x^{2}(x+9)}{(x-2)(x+9)}
$$

X-intercept(s): (0,0)
y-intercept(s): (0,0)

Find the HA and VA:

$$
f(x)=\frac{(x+4)}{(x-2)(x+1)}
$$

HA: $y=0$
$\mathrm{VA}: x=2, x=-1$

Find the HA and VA:
$f(x)=\frac{3 x^{3}-15 x^{2}+12 x}{x(x-4)(x+1)}$
HA: $y=3$
$\mathrm{VA}: x=-1$

Find the HA and VA:

$$
f(x)=\frac{x^{2}(x+9)}{(x-2)(x+9)}
$$

Find the holes:

$$
f(x)=\frac{(x+4)}{(x-2)(x+1)}
$$

Find the holes:

$$
f(x)=\frac{3 x^{3}-15 x^{2}+12 x}{x(x-4)(x+1)}
$$

| Write the equation of the |
| :--- | :--- | :--- |
| Wraph (hole at $x=2):$ |

Emily is building a fence to keep her strawberries safe. She has 40feet of fencing. The fence looks like below. What equation would you use to maximize the area of the garden? \square	$\begin{gathered} \text { Perimeter }=3 w+2 L \\ 40=3 w+2 L \end{gathered}$ Solve for L or W $L=\frac{40-3 w}{2}$ Maximize area: $\begin{gathered} \text { Area }=L W \\ \text { Area }=\left(\frac{40-3 w}{2}\right) W \end{gathered}$
The dimensions of a box are given below. What value of x maximizes the volume of the box? Length: 10-2x Width: 12-2x Height: x	$f(x)=(10-2 x)(12-2 x) x$ Max of 76.77 at $\mathbf{x}=1.81$ $x=1.81$ Maximizes the volume.
The dimensions of a box are given below. What value of x maximizes makes the volume 72? Length: 10-2x Width: 12-2x Height: x	$f(x)=(10-2 x)(12-2 x) x$ Graph and find when $\mathbf{y}=72$. The value is $\mathrm{x}=3$.

Find the average rate of change of $\begin{gathered} f(x)=4 x-1 \\ \text { from } x=3 \text { to } x=7 \end{gathered}$	$\frac{f(7)-f(3)}{7-3}=\frac{27-11}{4}=4$
Find the average rate of change of $\begin{aligned} & f(x)=4 x^{2}-2 x+6 \\ & \text { from } x=-2 \text { to } x=4 \end{aligned}$	$\frac{f(4)-f(-2)}{4-(-2)}=\frac{62-26}{6}=6$
Find the average rate of change of $\begin{gathered} f(x)=7 x^{4}-2 \\ \text { from } x=a \text { to } x=c \end{gathered}$	$\begin{aligned} & \frac{f(c)-f(a)}{c-a} \\ & =\frac{7 c^{4}-2-\left(7 a^{4}-2\right)}{c-a} \\ & =\frac{7\left(c^{4}-a^{4}\right)}{c-a} \\ & =\frac{7(c-a)(c+a)\left(c^{2}+a^{2}\right)}{c-a} \\ & =7(c+a)\left(c^{2}+a^{2}\right) \end{aligned}$

Find the average rate of change of $f(x)=8$ from $x=-3$ to $x=4$	$\frac{f(4)-f(-3)}{4-(-3)}=\frac{8-8}{7}=0$
Find the inverse of $f(x)=4 x-1$	$\begin{gathered} x=4 y-1 \\ x+1=4 y \\ y=\frac{x+1}{4} \\ f^{-1}(x)=\frac{x+1}{4} \end{gathered}$
Find the inverse of $f(x)=\sqrt{3 x-2}$	$\begin{gathered} x=\sqrt{3 y-2} \\ x^{2}=3 y-2 \\ x^{2}+2=3 y \\ f^{-1}(x)=\frac{x^{2}+2}{3} \end{gathered}$

Find the inverse of $f(x)=\frac{4 x+2}{3 x-1}$	$\begin{gathered} x=\frac{4 y+2}{3 y-1} \\ 3 x y-x=4 y+2 \\ 3 x y-4 y=2+x \\ y(3 x-4)=2+x \\ f^{-1}(x)=\frac{2+x}{3 x-4} \end{gathered}$
Find the inverse of $f(x)=2 x-9$	$\begin{aligned} & x=2 y-9 \\ & x+9=2 y \end{aligned}$ $f^{-1}(x)=\frac{x+9}{2}$

