Happy Wednesday, September 14

Do Now:

Find the maximum/minimum of the graphs below using your calculator.

$$f(x) = (x+2)^2$$
 $g(x) = -x^2 + 5x + 7$

Sep 14-6:54 AM

Snapshot of what's ahead

Today: Max/Min, Intervals

Thursday: (sub) Continuous Functions

Friday: End Behavior

Monday: Review

Tuesday: Quiz

LT1 Finding Maximum and Minimum points of functions

Aug 23-9:25 AM

Sketch a graph

Example 1: Mr. Ruback (an English teacher) is talking with Ms. Stilson about math. Sketch a graph of Mr. Ruback's level of interest in the conversation

Sketch a graph

Example 2: Ethan is running a race. Halfway through, he stops to pet a cute puppy. He then continues to run. Graph his distance away from the

start as time goes on.

Sep 13-4:46 PM

Sketch a graph

Example: Jake is running to catch a pass, but is tackled after he catches it. Sketch a graph of the distance from his face to the ground as time goes on.

Sep 13-4:50 PM

Sep 14-12:39 PM

Find the maximum and minimum.

Then describe the intervals of increase and decrease for

$$f(x) = (x+3)(x-1)^2$$

OCP 0-3.44 Alv

Exit Slip:

When reporting the <u>maximum value</u> of a function, do you write the x coordinate of the point or the y coordinate?

When reporting the <u>interval of increase or</u> <u>decrease</u> of a function do you write the x interval or the y interval?

Homework: Section 1.2 page 102

#25-34 EVENS,41-46 EVENS, (Max/Min and Intervals) #35-40 (Boundness)

In Exercises 25-28, state whether each labeled point identifies a local minimum, a local maximum, or neither. Identify intervals on which the function is decreasing and increasing.

Assume arrows

Aug 23-1:21 PM

1 Exercises 29–34, graph the function and identify intervals on which ne function is increasing, decreasing, or constant.

29.
$$f(x) = |x + 2| - 1$$

30.
$$f(x) = |x + 1| + |x - 1| - 3$$

31.
$$g(x) = |x + 2| + |x - 1| - 2$$

32.
$$h(x) = 0.5(x + 2)^2 - 1$$

33.
$$g(x) = 3 - (x - 1)^2$$

$$34. \ f(x) = x^3 - x^2 - 2x$$

In Exercises 41-46, use a grapher to find all local maxima and minima and the values of x where they occur. Give values rounded to two decimal places.

41.
$$f(x) = 4 - x + x^2$$

41.
$$f(x) = 4 - x + x^2$$
 42. $g(x) = x^3 - 4x + 1$

43.
$$h(x) = -x^3 + 2x - 3$$
 44. $f(x) = (x + 3)(x - 1)^2$

44.
$$f(x) = (x + 3)(x - 1)^2$$

45.
$$h(x) = x^2 \sqrt{x+4}$$
 46. $g(x) = x|2x+5|$

46.
$$g(x) = x|2x + 5$$

EVENS

In Exercises 35-40, determine whether the function is bounded above, bounded below, or bounded on its domain.

35.
$$y = 32$$

36.
$$y = 2 - x^2$$

37.
$$y = 2^x$$

39. $y = \sqrt{1 - x^2}$

38.
$$y = 2^{-x}$$

$$y = \sqrt{1 - x^2}$$
 40. $y = x - x^3$