Happy Wednesday, October 5th Do now:

Danielle is making a aquarium for her fish. She wants to give him the maximum amount of water to swim in. If the dimensions are as given, what is the maximum volume of water the fish will have?

Length: $17-2 \mathrm{x} \quad$ Width $=15-2 \mathrm{x} \quad$ Height $=\mathrm{x}$

$$
f(x)=(17-2 x)(15-2 x) x
$$

$D:(0,7.5)$

Oct 4-8:42 PM

Reassessment
Tuesday - Optional Reassessment! Choose up to 4 learning targets to reassess.

Wednesday - Mandatory Reassessment (everyone) over:

U1LT2: Domain and Range
U1LT3: Transformations on functions
U2LT3: End Behavior
L2LT4: Modeling

Let's Talk:
Standards Based Grading - Learning, Retention
I want you to be successful.
There are more important things than math (yes, even to me). graduation
Wis Cats
family $\sqrt{\text { dogs }}$ *ACT Ψ

SPORTS health

FAFSA piloting fun \sin scholarships

Oct 4-8:53 PM

Questions from the review:

$$
\begin{aligned}
& f(x)=x^{2}-3 x \\
& x=-3, x=5 \\
& \frac{f(5)-f(-3)}{5-(-3)}=\frac{10-18}{8}=\frac{-8}{8}=-1 \\
& \frac{f(c)-f(a)}{c-a}=\frac{c^{2}-3 c-\left(a^{2}-3 a\right)}{c-a} \\
& \frac{c^{2}-3 c-a^{2}+3 a}{c-a} \\
& \frac{c(c-3)-a(a+3)}{a}=\frac{f(a)-f(0)}{a-0}=\frac{a^{2}-3 a}{a}=\frac{\alpha(a-3)}{\alpha}= \\
& \frac{a-3}{a}
\end{aligned}
$$

Exit Ticket

If $\begin{aligned} & \left(1^{1} 1^{\prime}\right)=3 \text { and }(4,5)=5 \text {, and the function is continuous, is }\end{aligned}$ the function ever decreasing on the interval from $x=1$ to $x=4$? Explain your answer.

