Happy Wednesday, November 2nd!
Do Now:
$\log (0)$
$10^{x}=0$
Find the domain and range of

$$
\begin{gathered}
f(x)=\log (x-3) \\
0:(3, \infty) \\
10^{4}=x-3 \quad R:(-\infty, \infty)
\end{gathered}
$$

Quiz Monday so that we can Unit 3 Test on Friday and be done!!

No school Tuesday (election day)

Let's look at the homework together:

$$
\left.A=\underset{G}{P}\left(1+\frac{r}{\sqrt{n}}\right)^{@ \rightarrow}\right)
$$

1) How much money will you make if you invest $\$ 27,000$ at a rate of 3.75% compounded quarterly over three years? . $0375 \quad n=4$

$$
\begin{aligned}
& A=27,000\left(1+\frac{.0375}{4}\right)^{4.3}, ~
\end{aligned}
$$

lb) Change this to compound monthly instead.
$\$ 30209.70$

$$
n=12
$$

Nov 2-7:33 AM
$\$ 200$

$$
A=200\left(1+\frac{.05}{1}\right)^{1.8}
$$

Let's look at the homework together:
$\begin{array}{ll}1 & 29 \\ 2 & 58 \\ 3 & 87\end{array} \quad A=P(0.5)^{t}$
$t=\#$ of $1 / 2$ lives

1) Half-life of strontium is 29 years. How much of a 200 g sample will remain after 50 years?

$$
\begin{array}{r}
\frac{50}{29}=1.7 \text { half-lives } \\
\text { in } 50 \text { yrs }
\end{array}
$$

$$
60.5 \mathrm{~g}
$$

Let's look at the homework together:
a) New carbon activity is only .224 times that of today. What is the approximate age of the bone?

$$
\begin{array}{ll}
t=\log _{.5} .224 & \ln .224=\ln 0.5^{t} \\
t=2.16 & \ln .224=t \ln 0.5 \\
& \frac{\ln .224}{\ln 0.5}=t
\end{array}
$$

b) Fossil footprint: You don't have enough information! :(

$$
\begin{aligned}
& \text { 2. } 16 \times 5730 \quad-\quad H_{\text {half }} \text { life }_{\text {of }} \\
& 2.10 \times 5730 \quad A=P(0.5)^{t} \quad \begin{array}{l}
\text { carbonate of } \\
2,37645
\end{array} \quad \begin{array}{l}
\text { years! }
\end{array} \\
& 224=1(0.5)^{t} \text { years! }
\end{aligned}
$$

Exponential Population Model

If there starting population of a town was 10,000 and it grew by 17% a year, what would you do to get the population after one year?

$$
\begin{gathered}
* \quad 10,000(.17)+10,000 \\
* \quad 10,000(1.17)
\end{gathered}
$$

Two Yrs?

$$
10,000(1.17)^{2}
$$

$$
A=P(1+r)^{t}
$$

Properties of Exponential and Logarithmic
Equations

$$
a^{x}=a^{y} \quad \log _{a}\left(a^{x}\right)=x
$$

$\log _{a}(x)=\log _{a}(y)$

$$
a^{\log _{a} x}=x
$$

Exit Slip:

Solve for x :

$$
3 \log _{4}(1-x)=6 \quad 11(.78)^{-x}=25.3
$$

