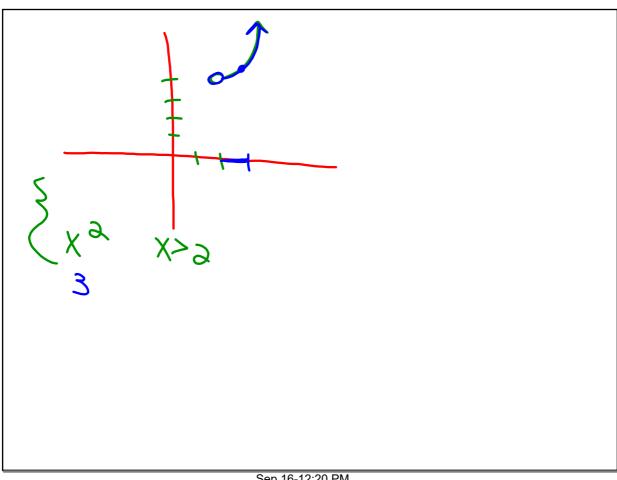
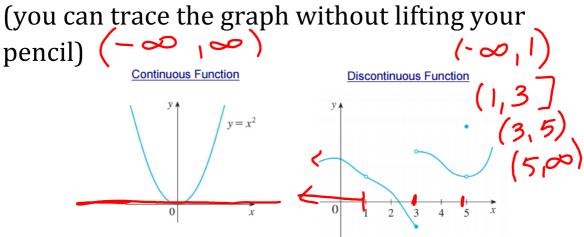
Happy Friday, September 16th!

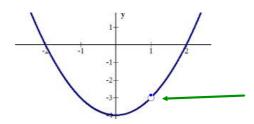

Do Now:

1) Look over your test, please no pictures (feel free to write things down)! Mark gradesheet.


2) Name 5 values that are in this interval: (-2,1]

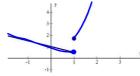
Sep 16-8:05 AM

Continuity/Discontinuity

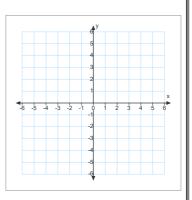

Continuity - A function is continuous at a point if the graph does not come apart at that point.

Sep 10-7:55 PM

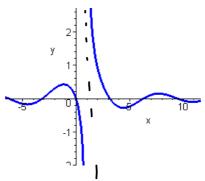
Discontinuity - The x-value(s) where the graph "breaks" (where you need to pick up your pencil).


Removable discontinuity - A discontinuity you could repair (remove) by plugging in the hole.

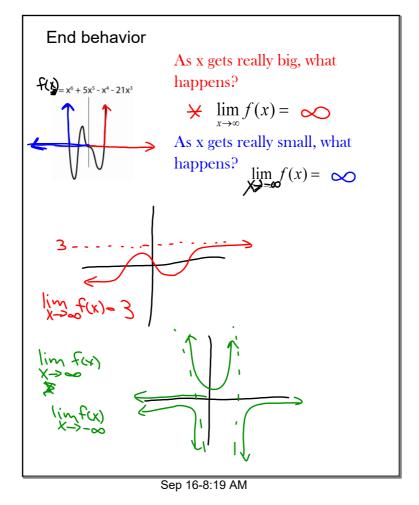
Find the discontinuity:
$$f(x) = \frac{x^2 - 4}{x + 2}$$


Jump Discontinuity - (non removable discontinuity) A jump in the function making it impossible to fix the discontinuity by plugging in the hole. X = X

(If you "plug it in" won't be a function)


Draw the piecewise graph and decide if there is a jump discontinuity.

$$f(x) = \begin{cases} x^2 - 2x & for \quad x < 1 \\ 2x - 3 & for \quad x \ge 1 \end{cases}$$


Sep 10-8:04 PM

Infinite Discontinuity - Must jump over a vertical asymptote... can't place a point anywhere to "remove" discontinuity.

Graph the function and locate the infinite discontinuity

$$f(x) = \frac{x+3}{x-1}$$

Graph the following and describe the end behavior:

$$f(x) = x^{4} + 3x^{2} - 6$$

$$f(x) = 3x^{6} - 2x^{3} + 5$$

$$g(x) = 4x^{2} + 6$$

$$h(x) = x^{4} + 2x - 6$$

What do these have in common? What can you conjecture about this type of function?

Graph the following and describe the end behavior:

$$f(x) = -x^4 + 3x^2 - 6$$
 $f(x) = -3x^6 - 2x^3 + 5$

$$f(x) = -3x^6 - 2x^3 + 5$$

$$g(x) = -2x^2 + 6$$

$$h(x) = -5x^4 + 2x - 6$$

What do these have in common? What can you conjecture about this type of function?

Sep 15-3:55 PM

Graph the following and describe the end behavior:

$$f(x) = x^3 + 3x^2 - 6$$

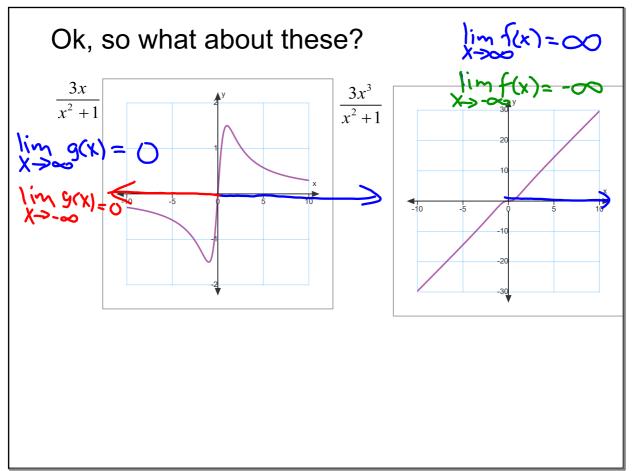
$$f(x) = 3x^5 - 2x^3 + 5$$

$$g(x) = 2x + 6$$

$$h(x) = 5x^7 + 2x - 6$$

What do these have in common? What can you conjecture about this type of function?

Graph the following and describe the end behavior:


$$f(x) = -x^3 + 3x^2 - 6$$
 $f(x) = -3x^5 - 2x^3 + 5$

$$g(x) = -2x + 6$$
 $h(x) = -5x^7 + 2x - 6$

What do these have in common? What can you conjecture about this type of function?

Sep 15-3:55 PM

	Leading coefficient is positive	Leading coefficient is negative
Leading degree is even	100=X 100 f(x)=00 100 f(x)=00	_ ∞
Leading degree is odd	$f(x) = x^3$ $f(x) = \infty$ $f(x) = -\infty$	$\lim_{x\to\infty}f(x)=-0$ $\lim_{x\to\infty}f(x)=0$

Sep 16-8:19 AM

Exit Slip:

Describe the end behavior of

$$f(x) = \frac{4x}{x^2 + 1}$$

Homework: 12-19 on the review.