7-8 Seating Chart:

$\underline{\text { Group 1 }}$	$\underline{\text { Group 2 }}$	$\underline{\text { Group 3 }}$	Group 4
Tessa Cynthia Nic Ethan Air Jose Will Pierre	Darielle		
Maxine	Juan	Anthony	Keymari
Kayla	$\underline{\text { Group 6 }}$	$\underline{\text { Group 7 }}$	$\underline{\text { Group 8 }}$
$\underline{\text { Group 5 }}$	Shawna	Omar	James D.
Sam D	Corinne	Justine	Matt L.
Alex	JP	Megan	Jesus M
James W.	Yasir	Lanie	Jordan
Isaiah			

Happy Tuesday, February 7th!

Do Now:

1) Take worksheet from back table
2) Notebooks out please :)
3) Keep quiz to study from

.085

An Example from Chemistry
$\mathrm{pH}=-\log [\mathrm{H}+]$

pH of our eyes is about 7.4
We want to balance this!!

7.4
 Two Different Pools

$$
p H=-\log (H+)
$$

* $\mathrm{PH}=7.4$

$$
p H=8.4
$$

$$
\mathrm{H}^{+}+\text {is } 0.00000000398
$$

PLUG and CHUG

There are three equations:

$$
\begin{aligned}
& \text { Growth/Decay } \\
& y=A(1+r)^{t} \\
& y=A(1-r)^{t}
\end{aligned}
$$

Half Life
$y=A\left(\frac{1}{2}\right)^{t / h}$

Continuous
$y=P e^{r t}$

PLUG and CHUG

Things to look for:
Rate: (usually a percentage) CONVERT TO DECIMAL.

Time: This is your exponent
Initial Amount The amount you start with
GROWTH OR DECAY????

Check out problem 1 on your worksheet:

Rate:
Time:
Initial Amount:
Growth or Decay?

Write a formula that represents the average growth of the population of a city with a rate o 7.5% per year. Let x represent the number of years, y represent the most recent total population of the city, and A is the city's population now. What is the expected population in 10 years if the city's population now is 22,750 people?

$$
\begin{array}{ll}
r=.075 & y=A(1+r)^{t} \\
t=10 & y=22750(1+.075)^{10} \\
A=22,750 & y=46,888.5=-46,889
\end{array}
$$

Things to look for:
Half-life: Usually says "half-life" Time: Time that is NOT your half-life

Initial Amount: The amount you start with

Check out number 5 on your worksheet!
Half-life:
Time:
Initial Amount:

Radioactive gold $(198 \mathrm{Au})$, used in imaging the structure of the liver, has a half-life of 2.67 days If the initial amount is 50 milligrams of the isotope, how many milligrams will be left over after:
43.91
a) $1+2$ day $=\frac{1}{2}$
b) $\frac{\text { reek }}{8.12 \text { milligram }} \Rightarrow t=7$

$$
\begin{aligned}
& y=A\left(\frac{1}{2}\right)^{(t / n)} \\
& y=50(0.5)^{(0.5 / 2.0)}
\end{aligned}
$$

Things to look for:
The word CONTINUOUS
Rate: (usually a percentage) Convert to decimal
Time: This is your exponent
Initial Amount: (usually money).
Remember e is a number your calculator knows.

Check out number 10 on your worksheet!

Do you see the word continuous?
Rate:
Time:
Initial Amount:

Suppose Jorge deposits $\$ 1500$ n a savings account that earns 6.75% interest compounded continuously. He plans to withdraw the money in 6 years to make a $\$ 2500$ down payment on a car. Will there be enough funds in his account in 6 years to meet his goal? Explain.

5. Without graphing, determine whether the following function is exponential growth or decay. Justify your reason,
$f(x)=\left(\frac{4}{3}\right)^{x-2}$
growth because $4 / 3$ is grecter then 1
6. Using the above function modify the parent function so that the following transformation is true.

Rieht 4, down 6
-
$f(x)=\left(\frac{4}{3}\right)^{x-2-4}-6=\left(\frac{4}{3}\right)^{x-6}-6$

Asymptote: $x=-3$
y Intercept: $\left(0, \log _{2} 3\right)$

