Happy Wednesday February 1st!!

Do Now:

- 1) Get out your desmos packet
- 2) Grab notes from back table

Feb 1-9:05 AM

Information

- 1) Formative on graphing on Friday (don't worry)
- 2) Test over graphing next Wednesday/Thursday
- 3) Reassessments the following week

Today

- 1) Go over "big ideas" from Desmos
- 2) Start transformations notes (on exponentials)
- 3) Finish Notes for homework

Feb 1-9:25 AM

What we learned

* asymptote
$$y = 3^{\times} + 6$$

* Transformation $y = 3^{\times} + 6 + 3 = 3^{\times} + 9$

* Growth/Decay

Have HORIZONTAL ASYMPTOTES

HA:
$$y = 6$$

$$y = 3 \cdot 2^{\circ} + 6$$

$$y = 3 \cdot 2^{\circ} + 6$$

$$y = 3 \cdot 2^{x+2} - 4$$

$$y = 3 \cdot 2^{x+2} - 4$$

$$y = 3 \cdot 2^{x+2} - 4$$

 $y = 3 \cdot 2^{\infty} + 6$ $y = 3 \cdot 2^{x+2} - 4$ Where is the asymptote? Where is the y-intercept?

Feb 1-9:26 AM

Logarithmic Graphs

$$y = \log_b(x+h) + k$$

Have <u>VERTICAL</u> ASYMPTOTES

$$x = 0$$

 $y = \log_2(x) + 3$ $y = \log_2(x + 3) + 5$

Where is the asymptote?

$$Y = \log(x-2)$$

$$X = 2$$

$$Y = \log(x+4) - 6$$

$$X = -4$$

Feb 1-11:00 AM

Describe the transformations that map $[y = 2^x]$

$$y = 2^x$$

onto each of the following functions.

Does it move up? Down? Left? Right?

$$\gamma = 2^{x} - 2$$

$$0_{own} \approx$$

Feb 1-9:34 AM

Feb 1-9:37 AM